
Package: jumps (via r-universe)
March 25, 2025

Type Package

Title Hodrick-Prescott Filter with Jumps

Version 1.0

Date 2025-03-20

Maintainer Matteo Pelagatti <matteo.pelagatti@unimib.it>

Description A set of functions to compute the Hodrick-Prescott (HP)
filter with automatically selected jumps. The original HP
filter extracts a smooth trend from a time series, and our
version allows for a small number of automatically identified
jumps. See Maranzano and Pelagatti (2024)
<doi:10.2139/ssrn.4896170> for details.

License GPL-3

Imports Rcpp (>= 1.0.10), stats, nloptr

LinkingTo Rcpp

RoxygenNote 7.3.2

Suggests knitr, rmarkdown, testthat (>= 3.0.0), ggplot2, xts

Config/testthat/edition 3

VignetteBuilder knitr

Encoding UTF-8

LazyData true

Config/pak/sysreqs cmake

Repository https://matteopelagatti.r-universe.dev

RemoteUrl https://github.com/matteopelagatti/jumps

RemoteRef HEAD

RemoteSha 02a6c787099584af4705ecbab9836744e931e6d0

1

https://doi.org/10.2139/ssrn.4896170

2 jumps-package

Contents
jumps-package . 2
auto_hpfj . 3
auto_hpfjx . 4
auto_hpfj_fix . 5
BIC.hpj . 6
da . 6
dummyseas . 7
employed_IT . 8
hpfj . 8
hpfjx . 10
hpfj_fix . 11
hpj . 12
llt . 13
logLik.hpj . 15
mse . 16
nobs.hpj . 16
plot.hpj . 17
print.hpj . 18
trigseas . 18

Index 20

jumps-package Hodrick-Prescott Filter with Jumps

Description

Extraction of a smooth trend with automatically selected jumps.

Details

This package implements a version of the HP filter and of smoothing splines that allow disconti-
nuities (jumps). The jumps are automatically selected using a LASSO-like regularization and the
optimal regularization constant can be found providing a grid of alternatives and using information
criteria. The user can also add regressors such as deterministic seasonal components.

Author(s)

Matteo Pelagatti, Paolo Maranzano.

Maintainer: Matteo Pelagatti <matteo.pelagatti@unimib.it>, Paolo Maranzano <paolo.maranzano@unimib.it>

References

Maranzano and Pelagatti (2024) A Hodrick-Prescott filter with automatically selected jumps.

auto_hpfj 3

auto_hpfj Automatic selection of the optimal HP filter with jumps

Description

The regularization constant for the HP filter with jumps is the maximal sum of standard deviations
for the level disturbance. This value has to be passed to the hpfj function. The auto_hpfj runs
hpfj on a grid of regularization constants and returns the output of hpfj selected by the chosen
information criterion.

Usage

auto_hpfj(
y,
grid = seq(0, sd(y, na.rm = TRUE) * 10, sd(y, na.rm = TRUE)/10),
ic = c("bic", "hq", "aic", "aicc"),
edf = TRUE

)

Arguments

y numeric vector cotaining the time series;

grid numeric vector containing the grid for the argument maxsum of the hpfj func-
tion;

ic string with information criterion for the choice: the default is "bic" (simulations
show this is the best choice), but also "hq", "aic" and "aicc" are available;

edf logical scalar: TRUE (default) if the number of degrees of freedom should be
computed as "effective degrees of freedom" (Efron, 1986) as opposed to a more
traditional way (although not supported by theory) when FALSE.

Value

The same ouput as the hpjf function corresponding to the best choice according to the selected
information criterion.

Examples

mod <- auto_hpfj(Nile)
plot(as.numeric(Nile))
lines(mod$smoothed_level)

4 auto_hpfjx

auto_hpfjx Automatic selection of the optimal HP filter with jumps and regressors

Description

This function needs more testing since it does not seem to work as expected. For this reasin the
wrapper hpj at the moment does not allow regressors. The regularization constant for the HP filter
with jumps is the maximal sum of standard deviations for the level disturbance. This value has to
be passed to the hpfjx function. The auto_hpfjx runs hpfjx on a grid of regularization constants
and returns the output of hpfjx selected by the chosen information criterion.

Usage

auto_hpfjx(
y,
X,
grid = seq(0, sd(y) * 10, sd(y)/10),
ic = c("bic", "hq", "aic", "aicc"),
edf = TRUE

)

Arguments

y numeric vector cotaining the time series;
X numeric matrix with regressors in the columns;
grid numeric vector containing the grid for the argument maxsum of the hpfj func-

tion;
ic string with information criterion for the choice: the default is "bic" (simulations

show this is the best choice), but also "hq", "aic" and "aicc" are available;
edf logical scalar: TRUE (default) if the number of degrees of freedom should be

computed as "effective degrees of freedom" (Efron, 1986) as opposed to a more
traditional way (although not supported by theory) when FALSE.

Value

The ouput of the hpjf function corresponding to the best choice according to the selected informa-
tion criterion.

Examples

y <- log(AirPassengers)
n <- length(y)
mod <- auto_hpfjx(y, trigseas(n, 12))
hpj <- ts(mod$smoothed_level, start(y), frequency = 12)
plot(y)
lines(hpj, col = "red")

auto_hpfj_fix 5

auto_hpfj_fix Automatic selection of the optimal HP filter with jumps and fixed
smoothing constant

Description

The regularization constant for the HP filter with jumps is the maximal sum of standard devia-
tions for the level disturbance. This value has to be passed to the hpfj_fix function. The func-
tion auto_hpfj_fix runs hpfj_fix on a grid of regularization constants and returns the output of
hpfj_fix according to the chosen information criterion.

Usage

auto_hpfj_fix(
y,
lambda,
grid = seq(0, sd(y) * 10, sd(y)/10),
ic = c("bic", "hq", "aic", "aicc"),
edf = TRUE

)

Arguments

y numeric vector cotaining the time series;

lambda smoothing constant;

grid numeric vector containing the grid for the argument maxsum of the hpfj func-
tion;

ic string with information criterion for the choice: the default is "bic" (simulations
show this is the best choice), but also "hq", "aic" and "aicc" are available;

edf logical scalar: TRUE (default) if the number of degrees of freedom should be
computed as "effective degrees of freedom" (Efron, 1986) as opposed to a more
traditional way (although not supported by theory) when FALSE.

Value

The ouput of the hpjf function corresponding to the best choice according to the selected informa-
tion criterion.

Examples

mod <- auto_hpfj_fix(Nile, "annual")
plot(as.numeric(Nile))
lines(mod$smoothed_level)

6 da

BIC.hpj BIC method for the class hpj

Description

BIC method for the class hpj

Usage

S3 method for class 'hpj'
BIC(object, ...)

Arguments

object an object of class hpj;

... additional objects of class hpj.

Value

If just one object is provided, a numeric value with the corresponding BIC. If multiple objects are
provided, a data.frame with rows corresponding to the objects and columns representing the number
of parameters in the model (df) and the BIC.

da Internal function for computing scores w/r to regression coefficients

Description

This function, not intended for end-users, implements the following recursions needed in computing
scores with respect to regression coefficients:

Da
(1)
t+1 = Da

(1)
t +Da

(2)
t − k

(1)
t xt − k

(1)
t Da

(1)
t

Da
(2)
t+1 = a

(2)
t − k

(2)
t xt − k

(2)
t Da

(1)
t

where a(1)t , a(2)t are the one-step-ahead Kalman filtered state variables, and k
(1)
t , k(2)t the respective

Kalman gain elements. The symbol D represent the partial derivative with respect to the regres-
sion coefficients and x_t is the vector of regressors. All variables are passed by reference and, so,
no output is needed.

Usage

da(k1, k2, X, A1, A2)

dummyseas 7

Arguments

k1 numeric vector of n elements with the Kalman gain sequence for the first state
variable;

k2 numeric vector of n elements with the Kalman gain sequence for the second
state variable;

X numeric matrix of dimension n× k with the regressors;

A1 numeric matrix of dimension n × k that, after calling the function will contain
the sequence of gradients Da

(1)
t ; the first row must be of zero values;

A2 numeric matrix of dimension n × k that, after calling the function will contain
the sequence of gradients Da

(2)
t ; the first row must be of zero values;

Value

It does not return anything as it writes on the A1 and A2 matrices passed as reference.

dummyseas Seasonal dummy variables

Description

It produces a matrix with seasonal dummies summing to zero to be used as regressors. If s is the
seasonal period, then the j-th dummy equals 1 in season j and −1/(s− 1) in the other seasons, so
that the variable sums to 0 over one year period.

Usage

dummyseas(n, s, remove = s)

Arguments

n length of time series;

s seasonal period;

remove to avoid collinearity with the constant remove a column, by default it is column
s; if NULL no column is removed.

Value

It returns a matrix with n rows and s− 1 column unless remove = NULL.

Examples

y <- log(AirPassengers)
X <- dummyseas(length(y), 12)
X <- cbind(X, t = 1:length(y))
reg <- lm(y~X)

8 hpfj

employed_IT Dataset: employed_IT

Description

A dataset containing the quarterly time series of employed people by age class in Italy in the time
span 1992Q4-2024Q1.

Usage

employed_IT

Format

A multivariate time series with 126 rows and 10 columns:

Y15.24 Thousand of employed in the age class 15-24

Y15.64 Thousand of employed in the age class 15-64

Y20.64 Thousand of employed in the age class 20-64

Y25.54 Thousand of employed in the age class 25-54

Y55.64 Thousand of employed in the age class 55-64

Y15.29 Thousand of employed in the age class 15-29

Y15.74 Thousand of employed in the age class 15-74

Y25.29 Thousand of employed in the age class 25-29

Y29.54 Thousand of employed in the age class 29-54

Y29.74 Thousand of employed in the age class 29-74

Source

Eurostat

hpfj HP filter with automatic jumps detection.

Description

This is the lower-level function for the HP filter with jumps. The user should use the hpj func-
tion instead, unless in need of more control and speed. The function estimates the HP filter with
jumps. Jumps happen contextually in the level and in the slope: the standard deviation of the slope
disturbance is γ times the standard deviation of the level disturbance at time t. The HP smooth-
ing parameter λ is estimated via MLE (assuming normally distributed disturbances) as in Wahba
(1978): λ = σ2

ε/σ
2
ζ .

hpfj 9

Usage

hpfj(y, maxsum = sd(y), edf = TRUE, parinit = NULL)

Arguments

y vector with the time series;

maxsum maximum sum of additional level standard deviations;

edf boolean if TRUE computes effective degrees of freedom otherwise computes
the number of degrees of freedom in the LASSO-regression way;

parinit either NULL or vector of 3+n parameters with starting values for the optimizer;
the order of the parameters is sd(slope disturbnce), sd(observatio noise), square
root of gamma, n additional std deviations for the slope.

Value

list with the following slots:

• opt: the output of the optimization function (nloptr)

• nobs: number of observations

• df: number of estimated parameters (model’s degrees of freedom)

• loglik: value of the log-likelihood at maximum

• ic: vector of information criteria (aic, aicc, bic, hq)

• smoothed_level: vector with smoothed level with jumps (hp filter with jumps)

• var_smoothed_level: variance of the smoothed level

References

Whaba (1978) "Improper priors, spline smoothing and the problem of guarding against model errors
in regression", *Journal of the Royal Statistical Society. Series B*, Vol. 40(3), pp. 364-372.
DOI:10.1111/j.2517-6161.1978.tb01050.x

Examples

set.seed(202311)
n <- 100
mu <- 100*cos(3*pi/n*(1:n)) - ((1:n) > 50)*n - c(rep(0, 50), 1:50)*10
y <- mu + rnorm(n, sd = 20)
plot(y, type = "l")
lines(mu, col = "blue")
hp <- hpfj(y, 60)
lines(hp$smoothed_level, col = "red")

10 hpfjx

hpfjx HP filter with jumps and regressors (still experimental)

Description

This function needs more testing since it does not seem to work as expected. For this reasin the
wrapper hpj at the moment does not allow regressors. This is the same as hpfj but with the
possibility of including regressors. The regressors should be zero-mean so that the HP filter can be
interpreted as a mean value of the time series. Jumps happen contextually in the level and in the
slope: the standard deviation of the slope disturbance is γ times the standard deviation of the level
disturbance at time t. The HP smoothing parameter λ is estimated via MLE (assuming normally
distributed disturbances) as in Wahba (1978): λ = σ2

ε/σ
2
ζ .

Usage

hpfjx(y, X, maxsum = sd(y), edf = TRUE, parinit = NULL)

Arguments

y vector with the time series

X matrix with regressors in the columns

maxsum maximum sum of additional level standard deviations;

edf boolean if TRUE computes effective degrees of freedom otherwise computes
the number of degrees of freedom in the LASSO-regression way.

parinit either NULL or vector of 3+n parameters with starting values for the optimizer;
the order of the parameters is sd(slope disturbnce), sd(observatio noise), square
root of gamma, n additional std deviations for the slope

Value

list with the following slots:

• opt: the output of the optimization function (nloptr)

• nobs: number of observations

• df: number of estimated parameters (model’s degrees of freedom)

• loglik: value of the log-likelihood at maximum

• ic: vector of information criteria (aic, aicc, bic, hq)

• smoothed_level: vector with smoothed level with jumps (hp filter with jumps)

• var_smoothed_level: variance of the smoothed level

References

Whaba (1978) "Improper priors, spline smoothing and the problem of guarding against model errors
in regression", *Journal of the Royal Statistical Society. Series B*, Vol. 40(3), pp. 364-372.
DOI:10.1111/j.2517-6161.1978.tb01050.x

hpfj_fix 11

Examples

y <- log(AirPassengers)
n <- length(y)
mod <- hpfjx(y, trigseas(n, 12))
hpj <- ts(mod$smoothed_level, start(y), frequency = 12)
plot(y)
lines(hpj, col = "red")

hpfj_fix HP filter with automatic jumps detection and fixed smoothing constant

Description

This is the lower-level function for the HP filter with jumps with fixed smoothing parameter. The
user should use the hpj function instead, unless in need of more control and speed. The function
estimates the HP filter with jumps. Jumps happen contextually in the level and in the slope: the
standard deviation of the slope disturbance is γ times the standard deviation of the level disturbance
at time t. In this case the HP smoothing parameter λ is fixed by the user and so that σ2

ε = λσ2
ζ .

Usage

hpfj_fix(y, lambda, maxsum = sd(y), edf = TRUE, parinit = NULL)

Arguments

y vector with the time series

lambda either a numeric scalar with the smoothing constant or a string with the fre-
quency of the time series to be selected among c("daily", "weekly", "monthly",
"quarterly", "annual"); in this case the values of the smoothing constant are
computed according to Ravn and Uhlig (2002), that is, 6.25s4, where s is the
number of observations per year.

maxsum maximum sum of additional level standard deviations;

edf boolean if TRUE computes effective degrees of freedom otherwise computes
the number of degrees of freedom in the LASSO-regression way.

parinit either NULL or vector of 3+n parameters with starting values for the optimizer;
the order of the parameters is sd(slope disturbnce), sd(observatio noise), square
root of gamma, n additional std deviations for the slope

Value

list with the following slots:

• opt: the output of the optimization function (nloptr)

• nobs: number of observations

• df: number of estimated parameters (model’s degrees of freedom)

12 hpj

• loglik: value of the log-likelihood at maximum

• ic: vector of information criteria (aic, aicc, bic, hq)

• smoothed_level: vector with smoothed level with jumps (hp filter with jumps)

• var_smoothed_level: variance of the smoothed level

Examples

set.seed(202311)
n <- 100
mu <- 100*cos(3*pi/n*(1:n)) - ((1:n) > 50)*n - c(rep(0, 50), 1:50)*10
y <- mu + rnorm(n, sd = 20)
plot(y, type = "l")
lines(mu, col = "blue")
hp <- hpfj_fix(y, 60, 60)
lines(hp$smoothed_level, col = "red")

hpj Hodrick-Prescott filter with jumps

Description

This function is a wrapper for the various Hodrick-Prescott filters with jumps functions. The end
user should use this: it is simpler and more flexible than the other functions.

Usage

hpj(
y,
maxsum = NULL,
lambda = NULL,
xreg = NULL,
ic = c("bic", "hq", "aic", "aicc"),
scl = 1000

)

Arguments

y either a numeric vector or a time series object containing the time series to filter;

maxsum maximum sum of additional level standard deviations, if NULL the value is se-
lected automatically on a grid using the specified information criterion (ic);

lambda smoothing constant of the HP filter, if NULL the value is estimated by maximum
likelihood;

xreg matrix of regressors;

ic string with information criterion for the automatic choice of maxsum: the default
is "bic" (simulations show this is the best choice), but also "hq", "aic" and "aicc"
are available.

llt 13

scl scaling factor for the time series (default is 1000): the time series is rescaled as
(y-min(y))/(max(y)-min(y))*scl. This is done since the default starting values
for the optimization seem to work well in this scale); If ‘scl‘ is set equal to the
string ‘"original"‘ the time series is not rescaled.

Value

S3 object of class hpj with the following slots:

• y: the input time series;

• maxsum: the maximum sum of additional standard deviations;

• lambda: the smoothing constant of the HP filter;

• pars: vector of estimated parameters (sigma_slope, sigma_noise, gamma);

• hpj: the time series of the HP filter with jumps;

• hpj_std: the time series of the HP filter with jumps standard deviations;

• std_devs: vector of additional standard deviations of the level disturbance;

• breaks: vector of indices of the breaks;

• xreg: matrix of regressors;

• df: model’s degrees of freedom;

• loglik: value of the log-likelihood at maximum;

• ic: vector of information criteria (aic, aicc, bic, hq);

• opt: the output of the optimization function (nloptr);

• call: the call to the function.

Examples

set.seed(202311)
n <- 100
mu <- 100*cos(3*pi/n*(1:n)) - ((1:n) > 50)*n - c(rep(0, 50), 1:50)*10
y <- mu + rnorm(n, sd = 20)
hp <- hpj(y, 50)
plot(hp)

llt Kalman filtering and smoothing for local linear trend plus noise

Description

It uses the power of C++, scalar computation and pointers to run the Kalman filter, the smoother
and compute the log-likelihood. The R user has to supply many vectors that in most cases will be
overwritten by the llt() function since they are passed by reference. All passed parameters must be
numerical (floating point) vectors: any other kind of variable may cause serious problems to the
stability of your system. Passing vectors of integers will make the computations fail.

14 llt

Usage

llt(
y,
var_eps,
var_eta,
var_zeta,
cov_eta_zeta,
a1,
a2,
p11,
p12,
p22,
k1,
k2,
i,
f,
r1,
r2,
n11,
n12,
n22,
e,
d,
w_ = NULL

)

Arguments

y vector of n observations

var_eps vector of n variances for the observation noises

var_eta vector of n variances for the level disturbances

var_zeta vector of n variances for the slope disturbances

cov_eta_zeta vector of n covariances between level and slope disturbances

a1 vector of n+1 one-step-ahead prediction of the level; the first element is the
initial condition for the level at time t=1, the other elements are arbitrary and
will be overwritten

a2 vector of n+1 one-step-ahead prediction of the slope; the first element is the
initial condition for the slope at time t=1, the other elements are arbitrary and
will be overwritten

p11 vector of n+1 one-step-ahead prediction error variance of the level; the first el-
ement is the initial condition for the level at time t=1, the other elements are
arbitrary and will be overwritten

p12 vector of n+1 one-step-ahead prediction covariances for level and slope; the first
element is the initial condition for the slope at time t=1, the other elements are
arbitrary and will be overwritten

logLik.hpj 15

p22 vector of n+1 one-step-ahead prediction error variance of the slope; the first
element is the initial condition for the level at time t=1, the other elements are
arbitrary and will be overwritten

k1 vector of the n Kalman gains for the level equation; values are arbitrary and will
be overwritten;

k2 vector of the n Kalman gains for the slope equation; values are arbitrary and will
be overwritten;

i vector of the n innovations; values are arbitrary and will be overwritten;

f vector of the n innovatoin variances;values are arbitrary and will be overwritten;

r1 vector of the n+1 smoothers (Th.5.4 in Pelagatti, 2015) for the level equation;
values are arbitrary and will be overwritten;

r2 vector of the n+1 smoothers (Th.5.4 in Pelagatti, 2015) for the slope equation;
values are arbitrary and will be overwritten;

n11 vector of the n+1 variance smoothers (Th.5.4 in Pelagatti, 2015) for the level
equation; values are arbitrary and will be overwritten;

n12 vector of the n+1 covariance smoothers (Th.5.4 in Pelagatti, 2015) for the level
and slope; values are arbitrary and will be overwritten;

n22 vector of the n+1 variance smoothers (Th.5.4 in Pelagatti, 2015) for the slope
equation; values are arbitrary and will be overwritten;

e vector of the n+1 observation error smoothers (Th.5.4 in Pelagatti, 2015); values
are arbitrary and will be overwritten;

d vector of the n+1 observation error variance smoothers (Th.5.4 in Pelagatti,
2015); values are arbitrary and will be overwritten;

w_ NULL (default) or vector of n weights for the effect of observation y_t on the
estimation of the hp filter (with jumps) at time t; values are arbitrary and will be
overwritten;

Value

The value of the Gaussian log-likelihood net of the -log(2*pi)*n/2 part that can be added if needed.

logLik.hpj logLik method for the class hpj

Description

logLik method for the class hpj

Usage

S3 method for class 'hpj'
logLik(object, ...)

16 nobs.hpj

Arguments

object an object of class hpj;

... not used: for consistency with generic function.

Value

An object of logLik class with the log-likelihood value and two attributes: df, the number of degrees
of freedom, and nobs, the number of observations.

mse Mean squared error

Description

It computes the mean squared difference between the elements of the vectors x and y.

Usage

mse(y, x)

Arguments

y vector

x vector

Value

The scalar mean squared difference/error.

nobs.hpj nobs method for the class hpj

Description

nobs method for the class hpj

Usage

S3 method for class 'hpj'
nobs(object, ...)

Arguments

object an object of class hpj;

... not used: for consistency with generic function.

plot.hpj 17

Value

The number of (non missing) observations of the time series on which the HP filter with jumps has
been applied.

plot.hpj Plot method for the class hpj

Description

Plot method for the class hpj

Usage

S3 method for class 'hpj'
plot(

x,
prob = NULL,
show_breaks = TRUE,
main = "original + filter",
use_ggplot = TRUE,
...

)

Arguments

x an object of class hpj;

prob coverage probability for the confidence interval of the filter;

show_breaks logical, if TRUE vertical lines are drawn at the jumps;

main title of the plot;

use_ggplot logical, if TRUE the plot is done with ggplot2;

... additional arguments passed to the plot function (if no ggplot2 is used).

Value

If use_ggplot is TRUE a ggplot object is returned, otherwise a base plot is shown and nothing is
returned.

18 trigseas

print.hpj Print method for the class hpj

Description

Print method for the class hpj

Usage

S3 method for class 'hpj'
print(x, ...)

Arguments

x an object of class hpj;

... not used: for consistency with generic function.

Value

No return value, called for side effects

trigseas Trigonometric seasonal variables

Description

It produces a matrix with seasonal sinusoids to be used as regressors. By default, for t = 1, . . . , n
and j = 1, . . . , ⌊s/2⌋, it computes

cos(2πj/s), sin(2πj/s)

. Notice that if s is even the sine function at highest frequency is omitted because it equals zero
for all t. The used can select a different set of harmonics.

Usage

trigseas(n, s, harmonics = NULL)

Arguments

n length of time series;

s seasonal period;

harmonics vector of harmonics to be used: the cosine and sine functions are computed at
frequencies 2*pi*harmonics/s, if there is an element of harmonics for which
2*pi*harmonics/s is equal to π the corresponding sine is omitted.

trigseas 19

Value

It returns a matrix with n rows and so many columns as the harmonics (by default these are s− 1).

Examples

y <- log(AirPassengers)
X <- trigseas(length(y), 12)
X <- cbind(X, t = 1:length(y))
reg <- lm(y~X)

Index

∗ datasets
employed_IT, 8

∗ package
jumps-package, 2

auto_hpfj, 3
auto_hpfj_fix, 5
auto_hpfjx, 4

BIC.hpj, 6

da, 6
dummyseas, 7

employed_IT, 8

hpfj, 8
hpfj_fix, 11
hpfjx, 10
hpj, 12

jumps (jumps-package), 2
jumps-package, 2

llt, 13
logLik.hpj, 15

mse, 16

nobs.hpj, 16

plot.hpj, 17
print.hpj, 18

trigseas, 18

20

	jumps-package
	auto_hpfj
	auto_hpfjx
	auto_hpfj_fix
	BIC.hpj
	da
	dummyseas
	employed_IT
	hpfj
	hpfjx
	hpfj_fix
	hpj
	llt
	logLik.hpj
	mse
	nobs.hpj
	plot.hpj
	print.hpj
	trigseas
	Index

